
core.ns Documentation
Release latest

Apr 30, 2020

Current core.NS documentation

1 What is core.NS ? 3

2 What is the place of the core.NS in the landscape of the Python packages 5
2.1 First steps in core.NS . 5
2.2 Namespace . 6
2.3 Functions . 6
2.4 Drivers . 7
2.5 What’s new ? . 8
2.6 Manpages . 8

Index 9

i

ii

core.ns Documentation, Release latest

Caution: core.NS is in constant state of development and improvement. While I am striving to keep backward
compatibility the best I could, please pay close attention to “What’s New” chapter of the documentation.

There are many Python Application Frameworks and when I am to introduce you another one, called core.NS. What
is the core.NS and what it’s place in the landscape of the Python packages ?

Current core.NS documentation 1

core.ns Documentation, Release latest

2 Current core.NS documentation

CHAPTER 1

What is core.NS ?

core.NS is a core application library, built around the idea of the Namespaces . This idea may be a bit unfamiliar to
a hardcore developers, who grow in the world of “Object-Oriented Programming”, procedural languages, globals and
local procedures and variables, scopes and many other things, that you’ve spend your life around. Although, this idea
will be very familiar to everyone, who’ve been around Unix OS. core.NS is a library, for creating and working with
“Unix filesystem”-like namespace, created inside application. There will be /bin, /dev, /home and other placeholders
you are familiar with. But instead concept that’s “everything is file”, core.NS proposes concept “Everything is a data
that you can set and read”

Note: core.NS ZEN rule #1 - “Everything is a data and everything is accessible and modifiable through a V()
procedure.” including functions. Functions are the “First-Class citizens” and treated exactly like any data.

Every function and data on core.NS namespace addressable by its path, which is exactly like Unix filesystem path.
Since data and a code are only logically separated, you do have a total freedom on how allocate them, but me, I am
following “good-ol’”, time-tested Unix filesystem patterns.

3

core.ns Documentation, Release latest

4 Chapter 1. What is core.NS ?

CHAPTER 2

What is the place of the core.NS in the landscape of the Python packages

core.NS is an “Application Framework”, means that is the tool for creating applications. And its have everything you
need to do that:

1. functions and data access primitives

2. low-level functionality is separated from your application code with help of drivers

3. command-line arguments parsing. You do not have to create parser. The one already provided for you. Just
define help texts and functions.

4. Startup and Shutdown functions. You just have to define the functions. All logic of the startup and shutdown
execution is provided.

5. “Smart” console

6. “Smart” log subsystem

7. Support for cooperative multitasking via gevent

2.1 First steps in core.NS

Warning: core.NS has been developed for Python3. Ans specifically for Python 3.6+ There is no plans to
backport core.NS to Python2. Sorry, folk!

As we already know, the very first steps in core.NS is initialization of the Namespace and receiving ability to call
functions and access data objects on the Namespace.

1 Python 3.7.4 (default, Jul 9 2019, 18:13:23)
2 [Clang 10.0.1 (clang-1001.0.46.4)] on darwin
3 Type "help", "copyright", "credits" or "license" for more information.
4 >>> from corens import *
5 >>> ns, f, F = NS()

(continues on next page)

5

http://gevent.org

core.ns Documentation, Release latest

(continued from previous page)

6 >>> V = f("V")
7 >>> V("/config/answer")
8 42

• On line 4, we are importing a basic functionality of the core.NS. Usually, that is all that you will need.

• On line 5, we are creating new Namespace. This call returns three elements: * Reference to a namespace
itself. Namespace in fact, is a one, big, complicated Python dictionary. Nothing more than that. You can work
with Namespace directly, as you would work with any dictionary, but it is not recommended. * Reference
to a function “f()”. This function is searching and returning you a reference to any other function stored in
Namespace. * Reference to a function “F()”. This function acts similarly to an f(), but instead of returning the
reference, F() install this function in Python builtins

• On line 6, we are referencing function V(), which we will need to access data elements.

2.2 Namespace

Note: core.NS ZEN rule #2 - Well regulated namespace of the data and code elements are more manageable and
comprehensible, then an artificial maze of the objects and cryptic defaults for the local and global variables. In a
Namespace, you can’t be wrong, because, what’s you place in the element defined by the path, that’s what you will
get. All the time.

Namespace - it is a in-memory (actually not only in-memory) tree-like collection of the data elements. Considering,
that the functions are the “First-Class Citizens”, those data elements also include functions. Each element defined by
it’s path. /bin/V , /config/answer, /home/MyData. There are two types of the data elements.

• Directories. Structure, which can not hold any data by itself, besides certain metadata, but which can hold a
references to other data elements. For example /bin/V, directory /bin keeping a reference to a data element V.

• Data element. It is an atomic, indivisible, placeholder for storing an actual data. Data elements can store a
references to another elements, but they are not a directories and they are terminating the path. For example:

– Directory /bin can form a finite path, if you are referring this directory, or be a part of the path to a data
element, like /bin/V

– Data element forming a finite path with the name of the data element at the end. Only directories can be
an intermediate parts of the path.

In order to refer an element in the namespace, you must know its path. For functions, core.NS provides special syntax
sugar which will simplify the search. But for other data elements, function V() expects the passing of the full path to
the element. There is no current or relative path. references. Only full path, which provides unquestionable, direct
reference of the data element. Function returns None, if data element not exists.

2.3 Functions

Note: core.NS ZEN rule #3 - Object-Oriented approach is nice, but it doesn’t mean that you have to use it everywhere.
Good functions are hard to beat. Write functions !

What’s differentiate core.NS function from regular Python function. There are reference to a global context, passed to
the function as first parameter. If function is a part of the drivers definition, there are two default first parameters. You

6 Chapter 2. What is the place of the core.NS in the landscape of the Python packages

functions.rst
drivers.rst

core.ns Documentation, Release latest

would say that it will be mundane to pass the same parameter to the each and every functions defined for core.NS. Not
if you are using partially applied functions.

What is the partially applied function ? Without going too deep in the theory of Lambda calculus and Functional
Programming, I’ll try to give a perfectly simple definition to this, in the reality, quite complicated term. Partially
applied function is such function which is bound with some of its parameters without actual execution of this function.
The reference on the function and bound parameters are serving as a reference on this function that you can call,
without specify parameters, that you already bound. Let me illustrate this concept with this simple example:

1 from corens import *
2

3 ns, f, F = NS()
4 V = f("V")
5 I = f("I")
6 V("/home/counter", 0)
7

8 def add1(ns, _path):
9 V = f("V")

10 V(_path, V(_path)+1)
11 return V(_path)
12

13 I("/bin/add1", add1)
14

15 f("add1")("/home/counter")
16 print(V("/home/counter"))

The first news is on the line 5. We are referencing function I(). This function creates partially applied function and
stored it in core.NS namespace for a latter use. Line 6, we are initializing our counter on the namespace. Then we are
creating a what looks like a normal Python function. But, wait. Look at the first parameter - this is core.NS function,
taking a reference to a namespace. Next “line of the interest” is 13. What you can find inside the function add1,
should’t cause any troubles. Remember: core.NS functions are not pure and V() is a function for accessing data stored
on namespace. And of course, if you look at source code of V() defined in ns.py, you will see that’s the V is sure,
core.NS function too. So, let’s take a look at line 13. We are defining function with path /bin/add1 and the function
is add1 as we defined it. This function will be converted to a partially applied function by the function I(). So I() is
just a syntax sugar for V(). You can create a partially applied functions with nothing but V(), but I will spare details of
“now” for now. Then on line 15, we are referencing function that we just define and call the reference with parameter.
Remember, f() return you the reference on the partially applied function. Line 16 shall bring you the fact that the value
stored in “/home/counter”, indeed increased.

So, the core.NS namespace do store partially applied functions for which you do not have to remember to pass the
first parameter. Parameter bound is “no-error” parameter.

2.4 Drivers

Note: core.NS ZEN rule #4 - Drivers are the perfect technics to hide low-level logic from the high-level logic and
organize communication between them via functons

What is the “low-level logic” and why drivers in core.NS ? Please allow me to give a simple definition of what is
core.NS driver:

The core.NS driver is a element of the code, which besides the reference to the global namespace, having a reference
to a context

Essentially, each driver it is a directory, holding some context-specific data as well as partial applied functions, each

2.4. Drivers 7

https://github.com/vulogov/core.ns/blob/master/corens/ns.py
functions.rst

core.ns Documentation, Release latest

of them is with two bound arguments: one to a global namespace, another one is to a directory, keeping context. The
closest “relative” of the core.NS drivers is a Unix drivers with contexts in /dev . There are low-level logic to work
with, for exaple /dev/sda, /dev/sdb and so on. Each of this logics, is provided with context and without context are
rather abstract.

Let me bring some example. We will extend a functionality of the core.NS with the counters. Context for counter
driver implementation will be stored in /dev. Each counter shall have a unique name. Each named counter must have
an easy to understand, namespace-based interface. For example, we can call function f(“/dev/counter/create”)() to
create counter and f(“/dev/c/$countername/++”)() to increase the value of the counter.

1 def _counter_open(ns, ctx, name):
2 c = nsGet(ns, "/dev/c/{}".format(name))
3 if c is not None:
4 return c
5 else:
6 c = nsMkdir(ns, "/dev/c/{}".format(name))
7 nsSet(ns, "/dev/c/{}/counter".format(name), 0)
8 nsSet(ns, "/dev/c/{}/++".format(name), partial(_counter_

→˓increase, ns, c))
9 return c

10

11 def _counter_increase(ns, ctx):
12 _path = ctx["__name__"]
13 c = "{}/counter".format(_path)
14 nsSet(ns, c, nsGet(ns, c) + 1)
15 return nsGet(ns, c)

Unlike in previous examples, in low-level implementations, I am recommending to use functions from corens.ns than
V(). There are reasons for that. Function _counter_open() takes extra parameter - name. When we will know the
name, first, we are checking if such name in /dev/c already exists. If not, we shall create directory, initialize default
value for the counter and create context-sensitive partially-applied function ++

After that, wrap it in _tpl = {} section of the module that you are adding to your core.NS.

_tpl = {
'counters': {

'create': _counter_open,
}

}

And then use Mk() function to initialize driver in /dev tree as Mk(‘counters’)

2.5 What’s new ?

2.6 Manpages

/bin/stamp Return a float number with current Unix timestamp

8 Chapter 2. What is the place of the core.NS in the landscape of the Python packages

Index

Symbols
/bin/stamp, 8

9

	What is core.NS ?
	What is the place of the core.NS in the landscape of the Python packages
	First steps in core.NS
	Namespace
	Functions
	Drivers
	What’s new ?
	Manpages

	Index

